FORGOT YOUR DETAILS?

Dr. Shahal Rozenblatt, Clinical Neuropsychologist, New York

JPost- Neurodegenerative conditions result from an impairment of motor function or cognitive

/ / Latest News

Neurodegenerative conditions result from an impairment of motor function or cognitive function or both.

Photo by: (Hebrew University

A new understanding of what happens on the cellular level during the development of neurodegenerative diseases – such as Parkinson’s, Alzheimer’s, amyotrophic lateral sclerosis (ALS) and Huntington’s diseases – offers promise toward possible new strategies for combating such diseases, according Hebrew University researchers. Neurodegenerative conditions result from an impairment of motor function or cognitive function or both. The impairment results from degeneration in the particular area of the brain responsible for those functions.

Although these diseases have been functionally linked to toxic protein deposits, there is much that is unknown about the mechanism through which aggregation causes toxicity and death at the cellular level. Inclusion bodies – structures comprised of pathogenic protein aggregates – have long been seen as a hallmark of disease, but the relationship between inclusions and disease has remained somewhat mysterious.

In a study published in PNAS (Proceedings of the [US] National Academy of Sciences), the Jerusalem researchers – working in the lab of Dr. Daniel Kaganovich in the cell and developmental biology department – present evidence suggesting that these inclusion bodies, which have traditionally been thought to accompany disease onset, actually have a cellbiological function that is not necessarily related to the disease conditions.

Further, the researchers suggest that some of those inclusion bodies are not only not toxic, but actually are part of a natural protective process. The researchers have identified two inclusion bodies, which they call JUNQ and IPOD.

Aggregation in the JUNQ can lead to toxicity, whereas aggregation in the IPOD is protective.

These findings, say the HU researchers, point to a new potential strategy for designing therapeutics for neurodegenerative disease. Instead of preventing proteins from aggregating, which can be very difficult, it may be possible to enhance the cellular ability to actively enclose harmful aggregates within protective inclusions, thereby neutralizing the toxic proteins that bring on further neurodegenerative damage and even death.

TOP